Here’s an algorithm for creating lookalike audiences using standard data from Google Analytics and Salesforce. This algorithm combines user behavior metrics from Google Analytics with customer demographics and purchase history from Salesforce to identify similar users.
Here’s a simplified Python code example using Pandas and Scikit-learn for creating a lookalike audience:
import pandas as pdfrom sklearn.preprocessing import StandardScalerfrom sklearn.cluster import KMeansdef create_lookalike_audience(seed_data, google_analytics_data, salesforce_data):"""Create a lookalike audience using seed data, Google Analytics, and Salesforce data.Parameters:- seed_data (list of dict): The seed audience data containing key attributes.- google_analytics_data (list of dict): Google Analytics data with user behavior metrics.- salesforce_data (list of dict): Salesforce CRM data with customer demographics and purchase history.Returns:- lookalike_audience (list of dict): A list of potential users for the lookalike audience."""# Convert data to DataFramesseed_df = pd.DataFrame(seed_data)ga_df = pd.DataFrame(google_analytics_data)sf_df = pd.DataFrame(salesforce_data)# Merge data on a common identifier (e.g., user_id)combined_df = pd.merge(seed_df, ga_df, on='user_id', how='inner')combined_df = pd.merge(combined_df, sf_df, on='user_id', how='inner')# Select relevant features for clustering# Ensure features exist in the DataFrameavailable_features = combined_df.columns.tolist()desired_features = ['page_views', 'session_duration', 'bounce_rate', 'goal_completions', 'age', 'income', 'purchase_history']features = [f for f in desired_features if f in available_features]# Standardize the featuresscaler = StandardScaler()standardized_features = scaler.fit_transform(combined_df[features])# Apply K-Means clustering to identify similar userskmeans = KMeans(n_clusters=5, random_state=42)combined_df['cluster'] = kmeans.fit_predict(standardized_features)# Identify the cluster(s) that most closely match the seed audienceseed_cluster = combined_df.loc[combined_df['user_id'].isin(seed_df['user_id']), 'cluster'].mode()# Create the lookalike audience by selecting users from the matching clusterlookalike_audience = combined_df[combined_df['cluster'] == seed_cluster]# Return the lookalike audience as a list of dictionariesreturn lookalike_audience.to_dict(orient='records')# Example input dataseed_data = [{'user_id': 1, 'age': 30, 'income': 60000, 'purchase_history': 5},{'user_id': 2, 'age': 25, 'income': 50000, 'purchase_history': 3}]google_analytics_data = [{'user_id': 1, 'page_views': 10,'session_duration': 300, 'bounce_rate': 20, 'goal_completions': 2},{'user_id': 2, 'page_views': 8,'session_duration': 250, 'bounce_rate': 30, 'goal_completions': 1},{'user_id': 3, 'page_views': 15,'session_duration': 400, 'bounce_rate': 10, 'goal_completions': 3}]salesforce_data = [{'user_id': 1, 'age': 30, 'income': 60000, 'purchase_history': 5},{'user_id': 2, 'age': 25, 'income': 50000, 'purchase_history': 3},{'user_id': 3, 'age': 35, 'income': 70000, 'purchase_history': 7}]# Generate the lookalike audiencelookalike_audience = create_lookalike_audience(seed_data, google_analytics_data, salesforce_data)# Output the lookalike audienceprint(lookalike_audience)
user_id
. This ensures that each user’s behavior metrics and demographic data are linked.page_views
, session_duration
, bounce_rate
, goal_completions
, age
, income
, and purchase_history
.StandardScaler
to ensure all metrics are on the same scale, which is crucial for clustering algorithms.If you encounter a KeyError
indicating that certain features are not in the index, ensure that the features you’re trying to select exist in your DataFrame. You can do this by checking the available columns in your DataFrame and adjusting your feature selection accordingly.
This algorithm can be used to target new customers who resemble your existing customer base. For instance, if you’re a fashion brand, you can use this algorithm to identify potential customers who have similar browsing behaviors and demographics to your existing customers, thereby increasing the likelihood of conversion.
To further enhance the effectiveness of your lookalike audiences, consider integrating them with other marketing tools like CRM systems or email marketing platforms. This allows you to automate workflows and personalize marketing campaigns based on the characteristics of your lookalike audience.
Quick Links
Legal Stuff